High Frequency Oscillatory Ventilation.
Ray Higginson RN BN(Hons), Senior Staff Nurse, Intensive Care Unit, University Hospital of Wales, Cardiff, South Wales
SUMMARY
- Conventional ventilation can have severe side effects for a patient and can sometimes fail to safely and adequately ventilate a patient.
- High Frequency Oscillatory Ventilation is now seen as an alternative when conventional ventilation fails.
- The principles of HFOV and its indications for use are highlighted.
- There are specific nursing requirements when nursing a patient on an oscillator.
KEY WORDS: High frequency oscillatory ventilation, mechanical ventilation, airway pressures, nursing.
INTRODUCTION
The vast majority of patients who are admitted to an Intensive Care Unit (ICU)
will need artificial ventilation (Jones et al 1998). The usual means through
which this is achieved will be via positive pressure ventilation. Gas is delivered
under positive pressure, allowing alveoli expansion and gas exchange (Adam and
Osborne1997).
However, the effects of this non-physiological approach to ventilation are numerous
and can be detrimental. Further more, in diseased lungs positive pressure ventilation
may not always provide adequate CO2 clearance or oxygen delivery and may even
result in alveolar/lung damage due to ventilating at high airway pressures (MacIntyre
and Branson 2001).
An alternative approach to conventional ventilation has emerged over the last
decade and is known as High Frequency Ventilation.
In this paper, High Frequency Oscillatory Ventilation (HFOV) will be discussed.
Why it is used, when is should be used and specific nursing aspects of dealing
with patients requiring HFOV will be addressed.
PATHOPHYSIOLOGY
In order to understand the benefits of artificial ventilation, it is first important
to understand respiratory failure.
Patients need to be intubated and ventilated in order to treat and manage respiratory
failure (Oh 1997), of which there are two types
- Type1: hypoxaemia without CO2 retention. These will include asthma, pneumonia, pulmonary oedema and pulmonary embolism.
- Type2: hypoxaemia with CO2 retention. These will include chronic bronchitis,
post operative hypoxaemia, chest injuries and chronic lung disease.
Along with patients suffering from respiratory failure, there are certain patients who need ventilatory support for other medical reasons. Post operative ICU admissions for 'waking, warming and weaning' are not uncommon (Adam and Osborne 1997) and certain maxillofacial surgical patients require a period of post operative care/management on ICU, during which time the patient is kept sedated and ventilated.CONVENTIONAL VENTILATION vs HFOV
Once a patient has been identified as needing artificial ventilation, they are
intubated and placed on a ventilator and ventilated using positive pressure.
Gases are delivered to the patient using pressure to inflate the lungs, expand
the alveoli and allow for gas exchange and oxygenation (Weavind and Wenker 2000).
Such delivery can be by means of pressure cycled, volume cycled and/or time
cycled. However, the point to remember here is that whatever the mode of conventional
ventilation used, they will all use positive pressure to deliver gas and achieve
their ventilatory goals.
This use of positive pressure ventilation has its side effects (Fort et al 1997).
These are briefly described below;
- Decreased cardiac output: Inspiratory pressure are higher than normal and will reduce venous return. Further, the use of Positive End Expiratory Pressure (PEEP) will further decrease venous return and, thus, cardiac output.
- Decreased urine out put: As the cardiac output fall, the kidneys attempt to retain fluid.
- Risk of ventilator associated pneumonia.
Risk of tracheal and lung damage if gases are not humidified.
Lung trauma due to high or increasing airway pressures.
It is the potential risk of barotrauma which HFOV attempts to deal with, and which will now be dealt with in more detail.Patients who develop Acute Respiratory Distress Syndrome (ARDS) will have reduced lung compliance and increases in their lung resistance (Simma et al 2000). Ventilating patients with either decreased lung compliance and/or increased lung resistance can lead to alveolar and lung damage and exacerbate their respiratory problems (Simma et al 2000, Weavind and Wenker 2000). HFOV is generally considered to be of benefit for patients with diseased lungs for a number of reasons;
1. It uses SMALLER tidal volumes than conventional ventilation. To try to deliver a constant tidal volume to a patient with increasingly 'stiff' lungs results in further lung complications. HFOV reduces this risk by delivering small tidal volumes.
2. HFOV keeps the lungs/alveoli open at a constant, less variable, airway pressure. This prevents the lung 'inflate-deflate', inflate-deflate' cycle, which has been shown to damage alveoli and further complicate lung disease (Fort et al 1997).
3. Along with the above lung protection strategy, it is believed that HFOV may enhance gas mixing and improve ventilation/perfusion (V/Q) matching (Fort et al 1997).
Thus, patients who are at risk of further lung damage due to increases in airway pressure secondary to increases in resistance and decreases in compliance, may benefit from HFOV. When conventional ventilation fails to safely and adequately provide respiratory support, HFOV can be considered an alternative.
HIGH FREQUENCY OSCILLATORY VENTILATION
Essentially, HFOV provides small tidal volumes (not really a tidal volume, but
an Amplitude, usually referred to as Delta P: P) usually equal to, or less than,
the dead space; 150 millilitres, at a very fast rate (Hertz-Hz) of between 4-5
breaths per second. The delivery of tidal volumes of dead space or less at very
high frequencies enables the maintenance of a minute volume. Lungs are kept
open to a constant airway pressure via a mean pressure adjust system. Further,
HFOV allows for the decoupling of oxygenation from ventilation: it allows the
clinician to separately adjust either oxygenation or ventilation.
This is a very simplified way of describing HFOV, and needs more detail if the
principles are to be understood.
The core of a HFOV system will be a piston assembly. Cairo and Pilbeam (2000)
describe the working of such a piston assembly very well;
"Such a system will incorporate an electronic control circuit, or square-wave
driver, which powers a linear drive motor. This motor consists of an electrical
coil within a magnet, similar to a permanent magnet speaker. When a positive
polarity is applied to the square-wave driver, the coil is driven forward. The
coil is attached to a rubber bellows, or diaphragm, to create a piston. When
the coil moves forward, the piston moves toward the patient airway, creating
the inspiratory phase. When the polarity becomes negative, the electrical coil
and the attached piston are driven away from the patient, creating an active
expiration."
The amount of polarity voltage applied to the electrical coil determines the
distance that the piston is driven toward/away from the patient' s airway. Therefore
increasing the polarity voltage increases the piston movement, or amplitude.
The easiest way to conceptualise this polarity voltage, or amplitude, is to
view it as the means by which tidal volumes are delivered, the greater the piston
displacement (amplitude) the more volume delivered to the patient. It is the
piston displacement which causes the oscillations. The extent to which the amplitude
increases depends on the resistence the piston encounters to forward movement
(Cairo and Pilbeam 2000). For example, when the oscillator is used with a patient
with low compliance or high resistance, the piston meets greater pressure during
the inspiratory phase.
Since tidal volumes are so low, gas transport mechanisms other than conventional
bulk flow must be invoked to explain gas and CO2 flow. This will be explained
a later.
Along with the above mentioned amplitude which provides ventilatory volumes,
a Mean Pressure Adjust control knob allows for adjustments in mean airway pressure
(Paw). This control varies the resistance placed on a mushroom shaped control
valve on the patient circuit at the terminus of the expiratory limb. This allows
the clinician to manipulate the Paw. Adjusting the Paw enables lung recruitment,
keeps lungs and alveoli open at a consent pressure, thus avoiding lung expansion/collapse,
lung expansion/collapse which is detrimental to the lungs. Research has also
shown that increasing the Paw during HFOV does not effect cardiac out put, unlike
conventional ventilation, and increases oxygenation (Fort et al 1997).
The mean pressure adjust control is Bias Flow dependent. Bias flow is the rate
at which the flow of gas, through the oscillator, is delivered to the patient.
The speed at which the oscillator runs is set by manipulating the frequency.
The frequency control sets the breaths per minute in Hertz (Hz). One Hz is equal
to one breath per second, i.e., 60 breaths per minute. A frequency of 5 Hz gives
a frequency of 5 breaths per second, or 300 breaths per minute. An important
point to remember is that as frequency is increased, the excursion of the piston
is limited by the time allocated for each breath cycle. Thus, changes in frequency
will effect Paw and the amplitude.
In conjunction with amplitude, mean airway adjust, bias flow, and frequency
control, an oscillator will usually also allow for the inspiratory time to be
adjusted. The inspiratory time will be displayed as % Inspiratory Time. Further,
as with conventional ventilators, alarm limits can also be set.
USES FOR HIGH FREQUENCY OSCILLATORY VENTILATION
The use of HFOV in neonates and paediatric patients is well researched and established
(Goldsmith and Karotkin 1998). However, its use with adults has only relatively
recently been realised. Research is now being conducted into its use with adult
patients.
The conceptual advantages of using HFOV are: smaller tidal volumes, a constant,
less variable, airway pressure and the fact that nonbulk-flow mechanisms may
improve V/Q matching. HFOV is used to avoid conventionally ventilating atelectasis
prone lungs in ARDS (Clark et al 1994). Over distention of the lungs and ongoing
atelectasis contribute to progressive lung injury which arises not directly
from the disease process itself, but from the impact of the ventilator patterns
used to support gas exchange during the course of the illness by conventional
ventilation (Isabey et al 1984). Atelectasis can be halted, and even reversed,
during HFOV, while avoiding the over distention so commonly seen with conventional
ventilation (Froese 1997, Tseng et al 1998, MacIntyre and Branson 2001).
Thus, HFOV is used to minimize ventilator-related lung injuries in ARDS. The
protective strategy of a constant airway pressure, with smaller tidal pressure
swings, preventing over distention, are reasons why HFOV is used.
In addition to this better alveoli recruitment strategy, the rapid flow pattern
may enhance gas mixing and improve V/Q matching. However, since tidal volumes
are smaller than usual, gas transport mechanisms other than conventional bulk
flow transport must be discussed to explain oxygen and CO2 flow. There are a
number of mechanisms to explain gas transport under these non-physiologic conditions.
The following have been suggested by Weavind and Wenker (2000):
- Bulk flow can still provide conventional gas delivery to proximal alveoli with low regional dead space volumes.
- Coaxial flow. Gas in the centre flows inward, while gas on the periphery flows outward. This can develop because of the asymmetric low profile of high velocity gases.
- Taylor dispersion can produce a mixing of fresh and residual gas along the front of a flow of gas through a tube.
- Pendelluft can mix gases between lung regions having different impedances.
- Augmented molecular diffusion can occur at the alveolar level secondary to the added kinetic energy from the oscillations
The combination of these non-physiological, non bulk flow gas mechanisms and a constant airway pressure, are the advantages of HFOV over conventional ventilation. Improvements in V/Q matching and the preventing of over distention have led HFOV to be viewed as an alterative to conventional positive pressure ventilation. In a study by Fort et al (1997) HFOV was evaluated in terms of safety and effectiveness in patients with ARDS and with whom conventional ventilation had failed. This prospective study (n=17) included patients who had failed conventional ventilation, had very high peak inspiratory pressure (peak pressure of 54.3 +/- 12.7cm H2O), a PaO2/FiO2 ratio of 68.6 +/- 21.6 and positive end expiratory pressure of 18.2 +/- 6.9cm H2O. HFOV was instituted after varying periods of conventional ventilation (5.12 +/- 4.3 days). A lung volume recruitment strategy was employed, consisting of incremental increases in mean airway pressures to achieve a PaO2 of > or to 8.0 kPa. During the study 13 patients demonstrated improved gas exchange and an overall improvement in PaO2/FiO2 ratio. Cardiac output was not compromised in any of the patients, despite increases in mean airway pressure. The authors of the study maintain that HFOV is both safe and effective in adult patients with severe ARDS failing conventional ventilation. They do, however, acknowledge the need for continual research into HFOV in adult patients who fail conventional ventilation.
COMPLICATION OF HIGH FREQUENCY OSCILLATORY VENTILATION
A number of complications of HFOV have been identified in the literature.
Although approved for use and despite the research into the effects of HFOV,
oscillatory ventilators are still, largely, experimental devises (Goldsmith
and Karotkin 1998). There are a number of devises available and this raises
the issue of staff training. Generalisation for one oscillator may not be applicable
to another (Goldsmith and Karotkin 1998).
The possibility of lung over distention due to trapping of gas has also been
investigated(Boros et al 1985). Such distending pressure is commonly called
inadvertent PEEP. Since this can not be measured directly, the exact extent
to which this is a problem is controversial. As is the problem of lung under
distention. In normal circumstances, small tidal volumes delivered at a constant
mean airway pressure may actually exacerbate, and indeed result in, progressive
atelectasis, one of the problems HFOV is thought to overcome!! Again, this is
controversial (Goldsmith and Karotkin 1998).
A number of studies have linked high frequency ventilation to tracheal inflammation
and a condition called Necrotizing Tracheobronchitis (NTB) (Boros et al 1985,
Wilson et al 1987, Goldsmith and Karotkin 1998). These conditions highlighted
the vital need of adequately humidifying respiratory gases. To
summarise the above, HFOV :
- Enables stable lung inflation
- Allows recruitment of alveolar space
- Reduces the risk of volutrauma
- Reduces risk of high peak airway pressure
- Reduces the risk of airway stretching
- Improves V/Q matching
NURSING A PATIENT RECEIVING HIGH FREQUENCY OSCILLATORY VENTILATION
When nursing a patient on an oscillator, there are a number of specific nursing aspects that should be highlighted.The sight of someone being 'oscillated' can be disturbing for the family and friends of the patient (ManIntyre and Branson 2001). It is therefore essential to ensure adequate information is provided by the nurse to the patient' s family and friends.
After a patient has been attached to an oscillator, the Paw will be increased. Observation of the patient for equal and continuous chest vibrations should be performed. This is known as the 'chest wiggle factor' . Chest wiggle is more accurate than using terms such as 'belly wobble', as not all patients have wobbly bellies!
Chest wiggle must be evaluated upon initiation and followed closely thereafter. If chest wiggle diminishes it may be that the ET tube has moved or is obstructed. Chest wiggle on one side only may indicate that the patient has developed a pnueumothorax. Chest wiggle assessments should be thereafter performed following any patient re-positioning.
It is nigh on impossible to auscultate the chest in the normal way whilst a patient is on an oscillator. Because the movement of gases through the lungs is different during HFOV, nurses must rely on other clinical signs. Listening to the piston via the chest has been suggested. The clinician can listen to the intensity or sound that the piston makes throughout the chest. However, what sounds the clinician is supposed to hear is debated and unclear. It is generally deemed, therefore, unnecessary to perform chest auscultation during HFOV.
A closed system suction unit should be used. It is not necessary to disconnect the patient to suction as this will potentially de-recruit lung volumes. Unless otherwise indicated, suctioning for the first 24 hours is not necessary. When using a closed system suction system, it is important to draw back the suction catheter all the way from the ET tube on completion. Ideally, the patient would be thoroughly suctioned before HFOV is commenced (Senormedics 1998). The point at which the ET tube is cut and secured at the lips should initially be noted. This measurement will act as a reference point in case there is confusion over whether the ET tube has moved.
ET tube position should be checked regularly. When the suction system is changed, two nurses will be needed to ensure safety. Once the patient is oscillated, the nurse must try not to disconnect the patient from the oscillator, or de-recruitment may occur. This is a controversial point. There is very little research/evidence into de-recruitment following disconnection from an oscillator. Further research is needed in order to establish the problem of disconnection associated de-recruitment.
The nurse must monitor blood gases, specifically PO2 and PCO2 and monitor cardiovascular status continuously (Kidd 1988). The nurse must also set alarm limits to within safe and acceptable boundaries.
The recognising of possible complications will involve the nurse being able to recognise ET tube obstruction (amplitude will increase, SpO2 will decrease and CO2 will increase). Recognise pneumothorax (decrease in SpO2, dissimilarity in the height of the left and right chest walls and a fall in blood pressure). To be able to recognise possible lung over-distension (Fall in blood pressure, increase in central venous pressure and decrease in SpO2). Should the nurse suspect any of these complications, then informing the appropriately trained medical staff is of, obvious, importance.
When positioning a patient, it is recommended that at least two nurses assist with ET tube protection to ensure that patient- ET tube disconnection does not occur (Sensormedics 1998). .
Finally, it is very important to humidify gases before they are delivered to the patient. A standard Fisher and Paykel system, for example, adequately humidifies gas and helps to prevent Necrotizing Tracheobronchitis (Goldsmith and Karotkin 1998).
SUMMARY OF NURSING CARE AND DUTIES
|
|
|
|
|
|
|
|
|
|
CONCLUSION
In conclusion, then, HFOV improves V/Q matching, enables decoupled oxygenation
and ventilation improvements, at a constant airway pressure. This means that
pressure swings are reduced and high peak airway pressure are avoided.. Atelectasis
is minimalised.
Although HFOV is not without its complications, research seems to suggest that
it is an alternative for the patient with ARDS who has failed conventional ventilation.
Specific nursing aspects need to be observed when nursing an oscillated patient.
First Published September 2002 Chest Medicine On-Line. Copyright 2002 Priory Lodge Education Limited
Home • Journals • Search • Rules for Authors • Submit a Paper • Sponsor us
All pages copyright ©Priory Lodge Education Ltd 1994-